Quality Analysis ...

Innovative Technologies

Code 4C

To minimize the matrix effects of the samples, the heavy absorber fusion technique of Norrish and Hutton (1969, Geochim. Cosmochim. Acta, volume 33, pp. 431-453) are used for major element (oxide) analysis. Prior to fusion, the loss on ignition (LOI), which includes H_2O+ , CO_2 , S and other volatiles, can be determined from the weight loss after roasting the sample at 1050°C for 2 hours. The fusion disk is made by mixing a 0.5 g equivalent of the roasted sample with 6.5 g of a combination of lithium metaborate and lithium tetraborate with lithium bromide as a releasing agent. Samples are fused in Pt crucibles using an automated crucible fluxer and automatically poured into Pt molds for casting. Samples are analyzed on a Panalytical Axios Advanced wavelength dispersive XRF

The intensities are then measured and the concentrations are calculated against the standard G-16 provided by Dr. K. Norrish of CSIRO, Australia. Matrix corrections were done by using the oxide alpha - influence coefficients provided also by K. Norrish. In general, the limit of detection is about 0.01 wt% for most of the elements.

Oxide	Detection Limit
SiO ₂	0.01
TiO ₂	0.01
Al ₂ O ₃	0.01
Fe ₂ O ₃	0.01
MnO	0.001
MgO	0.01
CaO	0.01
Na ₂ O	0.01
K ₂ O	0.01
P_2O_5	0.01
Cr ₂ O ₃	0.01
V ₂ 0 ₅	0.003
LOI	0.01

Code 4C Oxides and Detection Limits (%)